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Abstract

A simulation framework was developed for studying the deformation behavior of

metallic materials. Atomistic simulations were employed to study dislocation nucleation

during nanoindentation and to correlate dislocation behavior and overall material

response in thin-film crystals. An instrumented indenter was acquired to study the

indentation behavior of metallic composites. Experimental and continuum-based

modeling works on indentation of discontinuously reinforced metal matrix composites

were also conducted. Detailed microscopic features were analyzed, which aided in our

fundamental understanding of plastic deformation in these materials.

Research Objectives

This project is devoted to employing computational methods to simulate micro- and

nano-scale dislocation plasticity in metallic crystals. Specifically, computer simulations

are undertaken to probe the dislocation actions at the defect and atomistic levels.

Extensive modifications of our current codes have been carried out to target problems on

indentation and mechanical behavior at small length scales. The acquisition of an LO
instrumented micro-indenter for performing experimental verification is included in this

project. In this report, we document the salient achievements of our efforts as outlined

below.

Atomistic Simulations of Nanoindentation

Nanoindentation has received considerable attention in recent years, due in part to its

practicability as an experimental means in probing surface mechanical properties of bulk 0

0
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and miniaturized materials. Experiments on pure face-center-cubic crystals using load-

controlled devices have shown sudden displacement excursions in the indentation load-

displacement curve, which was thought to be caused by the homogeneous nucleation of

dislocations. In-situ experimental simulation using the bubble-raft model has illustrated

the homogeneous dislocation nucleation event in a two-dimensional (2D) crystalline

array under indentation. We have carried out a computational parallel to such

experimental observations using a 2D molecular statics approach.

Figure 1 shows a model 2D crystal, having the close-packed crystal structure, under

circular indentation to a certain depth. Subsurface nucleation of two pairs of dislocations

has occurred and they have slipped over certain distances in response to the indentation

loading, as highlighted. The simulated indentation load-displacement curve displayed

sudden reduction in load as a consequence of dislocation nucleation. Attempts for

correlating the nucleation event with local strain fields have been made. Figures 2(a) and

(b) show the simulated shear strain fields, resolved in the ±600 directions (slip directions),

right before the dislocations nucleated. The dislocation nucleation site coincides with the

maximum resolved shear strain site, with a strain magnitude being approximately 0.085.

Another set of simulations using a different indenter size has given a quantitatively

consistent result. The critical strain value is very close to that from the classical

Frenkel's approach of theoretical shear strength of crystals. The modeling framework

can be extended to study the strengthening and dislocation plasticity events in

nanolayered thin-film structures.
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Fig. 2 Simulated shear strain contours resolved in the two slip directions right
before dislocation nucleation occurs.

Atomistic Simulations of Dislocation Plasticity

The same modeling approach was also used to study dislocation behavior in thin-film

crystals under general loading conditions. To trigger dislocations in an otherwise perfect

crystal for non-localized loading, a defect source is required. Here we adopted a strategy

that a self-interstitial is placed inside the model and is allowed to equilibrate with its

surrounding atoms before loading commences.

An example is shown in Fig. 3 where the crystal is subject to simple shear loading along

the x-direction. A pair of dislocations evolves from the initial defect, as highlighted in

the figure. The overall load-displacement curve shows a sudden drop in load, which is

associated with the slipping of dislocations out of the crystal to create a slip step on each

side, as illustrated by the atomic snapshots. A permanent shape change of the crystal thus

results.
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We have undertaken analyses on the dislocation-dislocation interaction in the structure.

Figures 4 illustrate a case for dislocation interaction leading to a point defect. In Fig. 4(a)

two dislocation dipoles can be seen, with the inner dislocations approaching each other in
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response to the applied shear. Because these two dislocations are gliding on different slip

planes separated by one atomic layer, in Fig. 4(b) annihilation has taken place but with a

vacancy left behind. In Fig. 4(c) the two outer dislocations have moved out of the crystal.

A systematic analysis was performed, and the detailed results were published in Popolva,

et al. as documented below.
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displacements applied on the right boundary atoms. The substrate material is not

specifically accounted for. However, the atoms along the bottom boundary of the film

are restricted to maintain their y-positions. Their movements along the x-direction are

controlled to different extents, signifying the different interface sliding capabilities

investigated. In the extreme case of no slide, the x-component displacements of interface

atoms are made proportional to the prescribed boundary displacement, simulating perfect

bonding with the substrate which controls the macroscopic deformation. The maximum

allowable displacement along the interface, applied individually on interface atoms, is

expressed as

Ux,max = k " rmt (1)

where rint represents the spacing between adjacent atoms along the interface at the

beginning of the current loading increment (controlled by the prescribed boundary

displacement), and k is the sliding parameter. The parameter k is henceforth used to

designate the extent of sliding allowed in the model. Figure 5 shows the load-

displacement curves for four different cases of interface sliding and some representative

atomic snapshots of the cases of free slide and k = 0.001.

The plots in Fig. 5, with the corresponding colors and symbols shown, are largely self

explanatory. The important observations are that plastic yielding of the film is more

delayed with a decreasing capability of interfacial slide (with the dislocation "rebound" at

the interface being more difficult to occur), and that the overall film response and the

underlying dislocation behavior are extremely sensitive to the interfacial sliding

characteristics. Details can be found in the paper Shen and Leger documented below.

Experiments on Instrumented Indentation

Through this project we have acquired a Romulus Alexandra I instrumented indenter.

The intent is to conduct experimental studies on a wide variety of metallic materials and

composites. One particular focus is on the indentation response of heterogeneous

materials. Here we present results with a discontinuously reinforced metal matrix

composite. The material is the 2124 aluminum (Al) alloy reinforced with 13.2 vol.%

silicon carbide (SiC) whiskers (short fibers), with the whiskers oriented largely along a

single direction (defined as the "longitudinal" direction). Special attention is devoted to
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the indentation response in two different loading directions: parallel to the whisker

orientation (longitudinal) and perpendicular to the whisker orientation (defined as the

"lateral" direction). Figure 6 shows a representative result of the measured Vickers

hardness values under various indentation loads (25, 50, and 100 N) along the two

different directions. It is interesting to note that the lateral case consistently shows higher

hardness values than the longitudinal case. This is counterintuitive, since for such type of

composites under typical uniaxial loading, longitudinal loading always results in higher

overall strength than lateral loading.

H•dn WI.. DOh(9h-rs ingtre. e•t.-t) U ia
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~ ~ ~ ~,Fig. 6 Measured Vickers
- hardness at different loads (25

N, 50 N and 100 N), for the
N ? cases where indentation is

...... .. . .perpendicular to (referred to as
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S.L(referred to as "longitudinal")

-- i...,the fiber direction. The depth
..... unit is in gm.

Fig. 7 Contours of equivalent plastic strains under indentation loading in the
cases of (a) lateral and (b) longitudinal directions. Some whiskers are discernible
near the indentation site.

Numerical simulations using the finite element method were employed to rationalize the

experimental observations. The analyses utilized near random distributions of SiC

whiskers embedded within the Al matrix, under the 2D plane strain condition. Some
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results in the form of contour plots of equivalent plastic strains are shown in Figs. 7(a)

(lateral indentation) and 7(b) (longitudinal indentation). Only the whiskers in the

severely deformed region can be seen. The simulated indentation loading, shown in Fig.

8, actually shows a harder response in the lateral case than in the longitudinal case, in

consistence with the experiments.
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Fig. 8 Numerically simulated indentation load-displacement curves for the

cases of lateral and longitudinal loading.

We have also used nanoindentation to measure the surface residual stress in SiC particle

reinforced Al matrix composites. The technique features extrapolation of spherical

indentation data from the post-yield regime to determine the contact radius at the onset of

yielding. With the known yield strength of the matrix material, the biaxial residual stress

was obtained on the basis of a closed form solution. It is found that the residual stress is

primarily due to thermal expansion mismatch between Al and SiC, and the tensile stress

magnitude increases with the particle volume fraction. For the composite containing 30

vol.% SiC particles, the residual stress in Al reaches 268.8 MPa, which is considerably

lower than the yield strength of the unreinforced matrix. The experimental result

compares favorably with numerical modeling using the finite element analysis, as

illustrated in Fig. 9. Further details can be found in the publication Olivas et al. listed

below.

9



300 modeling: averaged max.
principal stress in matrix

200 -

0.. . . .
aT experiment

I UU

0

-100
I I II I

0 0.1 0.2 0.3

Particle Volume Fraction

Fig. 9 Comparison of experimental nanoindentation measurement of residual
stress in the matrix and the finite element modeling of averaged maximum
principal stress in the matrix. The error bars for the measured data are also
included.
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